skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Becker, T_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the temporal variability of plate tectonics is key to unraveling how mantle convection transports heat, and one critical factor for the formation and evolution of plate boundaries is rheological “memory,” that is, the persistence of weak zones. Here, we analyze the impact of such damage memory in global, oceanic‐lithosphere‐only models of visco‐plastic mantle convection. Self‐consistently‐formed weak zones are found to be reactivated in distinct ways, and convection preferentially selects such damaged zones for new plate boundaries. Reactivation of damage zones increases the frequency of plate reorganizations, and hence reduces the dominant periods of surface heat loss. The inheritance of distributed lithospheric damage thus dominates global surface dynamics over any local boundary stabilizing effects of weakening. In nature, progressive generation of weak zones may thus counteract and perhaps overcome any effects of reduced convective vigor throughout planetary cooling, with implications for the frequency of orogeny and convective transport throughout Wilson cycles. 
    more » « less